Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 128(1): e2022JE007185, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37034460

RESUMO

The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. Curiosity roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment. Curiosity acquired samples from 11 drill holes during this campaign and conducted the first Martian thermochemolytic-based organics detection experiment with the Sample Analysis at Mars instrument suite. The lowest elevations within Glen Torridon represent a continuation of lacustrine Murray formation deposits, but overlying widespread cross bedded sandstones indicate an interval of more energetic fluvial environments and prompted the definition of a new stratigraphic formation in the Mount Sharp group called the Carolyn Shoemaker formation. Glen Torridon hosts abundant phyllosilicates yet remains compositionally and mineralogically comparable to the rest of the Mount Sharp group. Glen Torridon samples have a great diversity and abundance of sulfur-bearing organic molecules, which are consistent with the presence of ancient refractory organic matter. The Glen Torridon region experienced heterogeneous diagenesis, with the most striking alteration occurring just below the Siccar Point unconformity at the Greenheugh pediment. Results from the pediment campaign show that the capping sandstone formed within the Stimson Hesperian aeolian sand sea that experienced seasonal variations in wind direction.

2.
J Geophys Res Planets ; 127(6): e2021JE007096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865672

RESUMO

Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.

3.
J Geophys Res Planets ; 125(11): e2019JE006322, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282614

RESUMO

Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on "Mt. Sharp" in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences crosscut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient Martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain-size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.

4.
Sci Adv ; 6(36)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32917587

RESUMO

Hematite (Fe2O3) is a common oxidization product on Earth, Mars, and some asteroids. Although oxidizing processes have been speculated to operate on the lunar surface and form ferric iron-bearing minerals, unambiguous detections of ferric minerals forming under highly reducing conditions on the Moon have remained elusive. Our analyses of the Moon Mineralogy Mapper data show that hematite, a ferric mineral, is present at high latitudes on the Moon, mostly associated with east- and equator-facing sides of topographic highs, and is more prevalent on the nearside than the farside. Oxygen delivered from Earth's upper atmosphere could be the major oxidant that forms lunar hematite. Hematite at craters of different ages may have preserved the oxygen isotopes of Earth's atmosphere in the past billions of years. Future oxygen isotope measurements can test our hypothesis and may help reveal the evolution of Earth's atmosphere.

5.
Nature ; 479(7371): 53-60, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22051674

RESUMO

Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.


Assuntos
Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Meio Ambiente Extraterreno/química , Água Subterrânea/análise , Marte , Silicatos de Alumínio/classificação , Argila , Exobiologia , Gelo/análise , Silicatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...